

BASIC MANUFACTURING TRAINING

September 24th. 2019

Manufacturing Task Lead – Scott Creger

AGENDA

- Process overview
- Machining theory
- Machining techniques
- BIDC capabilities

PROCESS OVERVIEW

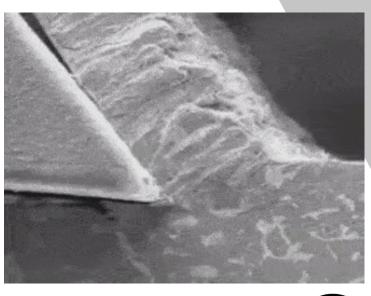
- 3 training sessions + example part
- Manufacture as much as we can in-house
- Will be utilizing the BIDC
- TAs at Bechtel can help inexperienced manufacturers
- Parts list for designating work
- If possible, the person who designed the part will make it
- Mostly independent work

CURRENT BOM

Subteam	Item	Quantity	Material	Critical dimensions	Difficulty (1-5)	Priority (1-3)	Who is making it	Quantity Complete
Aerodynamic: ▼	Fin Can	1	6061 Aluminum	Hole placement	4	1		0
Aerodynamic: ▼	Fins	3	6061 Aluminum	Hole placement	1	2		0
Structures *	Avionics bulkplate	1	6061 Aluminum	OD	1	3		0
Structures *	Structures bulkplate	1	6061 Aluminum	OD	1	3		0
Structures *	Intertank halftube		6061 Aluminum		4	2		0
Structures *	Intertank tube connector	2	6061 Aluminum		4	2		0
Fluid System: ▼	Flight tank end caps	2	6061 Aluminum		5	1		0
Propulsion *	Outer Phenolic Tube	1	Phenolic			1		0
Propulsion *	Inner Phenolic Tube	1	Phenolic			1		0
Propulsion *	Paraffin Wax Fuel Grain	1	Paraffin Wax		3	2		0
Propulsion *	Test Nozzle	1	Mild Steel	Inner geometry	3	1		0
Propulsion *	Flight Combustion Chamber Tube	1	7075 Aluminum			2		0
Propulsion *	Test Combustion Chamber Tube	1	Mild Steel			1		0
Propulsion *	Injector Outer Casing	1	6061 Aluminum		5	1		0
Propulsion *	Injector Face Plate	1	Mild Steel		3	1		0
Propulsion *	Retention Ring	1	6061 Aluminum		3	1		0
Payload *	Gelatin #0	1			2	3		0
Payload *	Sawbones Artificial Bones	2			1	3		0
Payload *	Bottom/Top Plate	2	6061 Aluminum	OD, Fits support columns	1	3		0
Payload *	Upper/Lower Test Chamber Plate	2	6061 Aluminum	OD, Fits support columns	1	3		0
Payload *	Support Columns	4	6061 Aluminum	Fits test chamber plates	1	3		0
Payload *	Outer Sheath	2	6061 Aluminum		1	3		0
Payload *	Bone clamp top	4	6061 Aluminum			3		0
Payload *	Bone clamp bottom	4	6061 Aluminum			3		0
Aerodynamic: *	Avionics Bay	1	PLA	OD	1	2		0

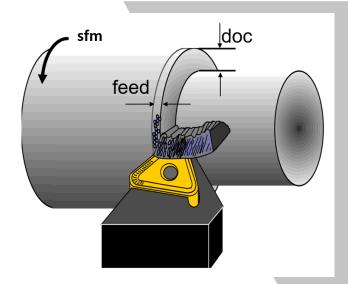
MACHINING THEORY

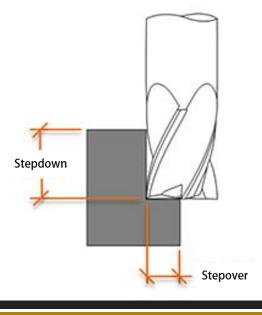
What is machining?


Controlled removing of material to shape an object into a desired form

- Shearing
- Heat and pressure
- Tool material
 - HSS
 - Carbide

Kennemetal




SPEEDS & FEEDS

- Surface Feet per Minute (SFM)
- Feed Rate
- Depth of Cut

Stepover and Stepdown

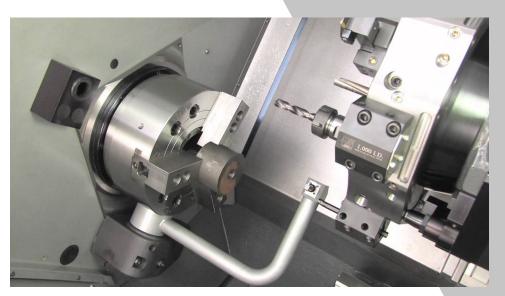
Kennemetal

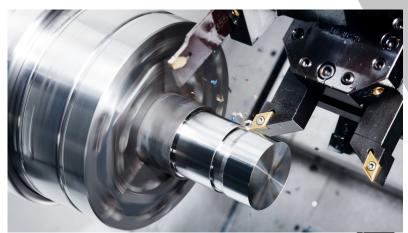
MACHINING TECHNIQUES

- Milling
- Turning
- Cutting (Waterjet)

MILLING

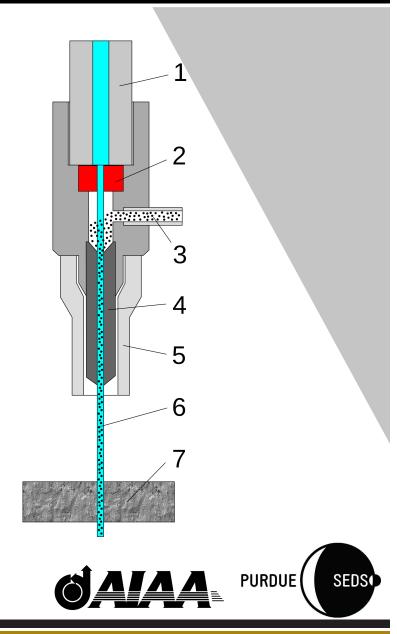
- Rectangular stock
- Bed size 50" x 20" x 25"
- VPS
- CAM for complicated parts
- 5-axis





TURNING

- Circular stock
- Up to 8in round
- 20in length
- Spins the material rather than the tool



WATERJET

- Cuts basically anything
- 4x8 foot bed
- 5.75" thickness

GENERAL TIPS

- Take the time that you think it will take to make your part and double it
- Think about how you will hold the part
- Internal corners need to be filleted
- Bigger fillets = bigger tool = faster machining

BIDC CAPABILITIES

- CNC Mills (2 x VF4, 1 x VF2 and 1 x DT1)
- CNC Lathes (1 x ST20, 1 x ST20Y)
- Waterjet
- Drill Press
- Vertical and Horizontal Band Saw
- Belt sander
- Etc.
- Register at BIDC and take safety quizzes
- Must submit a project before you go in

QUESTIONS?

