Milestone Review Flysheet 2019-2020

Institution

Purdue University

Vehicle Properties		
Total Length (in)	127	
Diameter (in)	6	
Gross Lift Off Weight (lb)	53.2	
Airframe Material(s)	Filament-wound fiberglass	
Fin Material and Thickness (in) 3/16 G10 Fiberglass		
Coupler Length(s)/Shoulder Length(s) (in)	6, 14	

M	lotor Properties
Motor Brand/Designation	Cesaroni Technology L1115-0
Max/Average Thrust (lb)	385.48, 251.78
Total Impulse (lbf-s)	1128.38
Mass Before/After Burn (lb)	9.63, 4.22
Liftoff Thrust (lb)	324.46
Motor Retention Method	Aeropack Motor Retainer

Stability Anal	ysis
Center of Pressure (in. from nose)	94.348
Center of Gravity (in. from nose)	75.569
Static Stability Margin (on pad)	3.04
Static Stability Margin (at rail exit)	3.08
Thrust-to-Weight Ratio	5.77
Rail Size/Type and Length (in)	15-15, 144
Rail Exit Velocity (ft/s)	63.5

Ascent Analy	sis
Maximum Velocity (ft/s)	534
Maximum Mach Number	0.48
Maximum Acceleration (ft/s^2)	200
Target Apogee (ft)	4325
Predicted Apogee (From Sim.) (ft)	4389

Recovery System Prope	rties - Overall
Total Descent Time (s)	99.3
Total Drift in 20 mph winds (ft)	2605

Recovery Syst	em Properti	es - Energetics
Ejection System Energetics (ex	Black Powder (FFFFg)	
Energetics Mass - Drogue	Primary	2
Chute (grams)	Backup	3
Energetics Mass - Main	Primary	5
Chute (grams)	Backup	6
Energetics Mass - Other	Primary	NA
(grams) - If Applicable	Backup	NA

Milestone

FRR

Payload Deployment	
Location: Air or Ground (if applicable)	Ground
Altitude of Deployment (if applicable)	N/A

Recovery System Properties - Recovery Electronics			
Primary Altimeter Make/Model		Altus Metrum Telemetrum	
Secondary Altimeter Ma	ke/Model	Missile Works RRC3+ Sport	
Other Altimeters (if app	olicable)	N/A	
Rocket Locator (Make/Model)		Altus Metrum Telemetrum	
Additional Locators (if applicable)		N/A	
Transmitting Frequencies (all - vehicle and payload)		435, and 902-928 MHz	
Pad Stay Time (Launch Configuration)		3 hours	
Describe Redundancy Plan (batteries, switches, etc.) Fully redundant and independent systems with individual batteries, switches, wires, a ejection charges		l batteries, switches, wires, and	

Recovery System Properties - Drogue Parachute			achute		
Ma	nufacturer/Mo	del	Fruity Chutes Classic Elliptical		
Size o	or Diameter (in	or ft)	24"		
Main Altim	neter Deployme	ent Setting	Apogee		
Backup Alti	meter Deploym	ent Setting	Apogee + 1 second		
Velocity at Deployment (ft/s)			31.3		
Terminal Velocity (ft/s)		93.9			
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		3/8" Tubular Kevlar			
Recovery Harness Length (ft)			30		
Harness/Airfra	ime Interfaces	1/4" SS quick link through looped tet and 1/4" SS I-bolts through bulk			
Kinetic	Section 1	Section 2	Section 2 Section 3 Sec		
Energy (Ft- lbs)	3170.6	869	1893.8	N/A	

Recovery System Properties - Main Parachute					
Ma	nufacturer/Mo	del	Skyangle Cert 3 XXL		
Size o	or Diameter (in	or ft)	120"		
Main Altime	ter Deploymen	t Setting (ft)	800		
Backup Altim	eter Deployme	nt Setting (ft)	700		
Velocity at Deployment (ft/s)		93.9			
Terminal Velocity (ft/s)		13.5			
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		3/8" Tubular Kevlar			
Recovery Harness Length (ft)			60		
Harness/Airtrame Interfaces		ink through loo S I-bolts throug	ped tether ends sh bulkheads		
Kinetic Energy (Et-	Section 1	Section 2 Section 3 Section 4			

		Energy (Ft- lbs)	65.4	17.8	39.1	N/A
	Milestone Review Flys	heet 201	9-2020			
Institution	Purdue University]	Milestone		FRR	
	Payload					
	Ovi	erview				
Payload 1 (official payload)	The primary payload experiment for the 2019-2020 PSP-SL team is an autorice sample after the flight of the rocket. The UAV employs a quad-rotor de UAV is securely held inside the rocket with a sophisticated retention and d design to actively retain the UAV system inside the rocket throughout the DOF IMU to reorient the internal structure of the payload bay after landing flight. The UAV deploys from the rocket, beginning an autonomous search and grid-based search algorithm to look for recovery areas. After identifyir UAV actuates its cylindrical-scoop based ice mining system, storing more t completing its mission.	sign with foldat eployment syst course of the fli g. The stepper n for an ice minir ng a recovery ar	le wings, allowi em. This system ght. The system notor finally sep og recovery area ea, the UAV des	ing the UAV to a utilizes a worr a uses a servo n parates the pay a. The UAV emp scends, landing	fit inside rocket m-screw and ste notor in conjund load bay, expos ploys a compute on the simulate	's airframe. The epper motor ction with a 6 ing the UAV for er-vision system ed lunar ice. The
	Ov	erview				
Payload 2 (non-scored payload)	The secondary payload experiment is a small camera, whose purpose is to record the flight of the rocket from on-board the launch vehicle. The footage from this camera will yield important data for PSP-SL regarding the conditions of the vehicle throughout the course of the flight. Additionally, the footage will be used for educational engagement in outreach events sponsored by PSP-SL in the greater West Lafayette community.					
	Test Plans, Status, a	nd Results				
Ejection Charge Tests	Airframe separation via ejection charge (black powder) ignition has been t least six feet of separation of the avionics bay from the corresponding airfu grams for the upper airframe canisters and two grams for the lower airfran success criteria were met.	rame for at leas	t one amount o	f black powder	equal to or gre	ater than five

	Data detailing a successful sub-scale launch will be compiled by the team's deadline of 01/03/2020. To obtain this data, the team will launch at this date
Sub-scale	at the latest; however, the team hopes to do so long before this date, and plans to have its sub-scale launch vehicle built by mid-November. Finishing
Test Flights	construction by this time will give the team the opportunity to launch at four separate launch events: Midwest Power, two Rocketeers of Central
	Indiana sport launches, and an Indiana Rocketry launch.

The vehicle demonstration flight, conducted on February 15th was unsuccessful. Boosting and coasting phases were successful, however at apogee, the lower airframe/shock cord/ drogue were not properly attached to the eye bolt on the avionics bay and there for separation occured. The main parachute charges did deploy and the avionics bay did separate but due to a lack of additional weight from the lower airframe and the main being packed too tightly, the main parachute did not open by the time the nose cone, upper airframe, payload, and avionics hit the ground ballistically. The nose cone sustained some minor radial damages and due to safety concerns a new nose cone was purchase. The payload was nearly all destroyed besides a few components. the upper airframe did not sustain any damages and was deemed reusable for the second iteration of the launch vehicle. The avionics bay sustained heavy damages: the coupler was damaged and deemed not reusable, the Telemetrum sustained minor damages, the threaded rods and all 3D printed components were destroyed, and both bulkplates were deemed reusuable. The lower airframe has not been found even after over eight hours of line-searching.

Payload Demonstrati on Flight The final payload design was flown on the vehicle demonstration flight, with the hopes of conducting both flights at the same time, and was destroyed after the nosecone and upper airframe came in ballistically. The payload has since been completely rebuilt and will fly on the reflight of the demonstrion flight on March 7th.

Milestone Review Flysheet 2019-2020

н F

Institution

Purdue University

Milestone

FRR

Transmitter #1			
Location of transmitter:	Transmitter #1 is located in the upper-section of the payload bay, within the rocket's nose cone.		
Purpose of transmitter:	Transmitter #1 receives a deployment signal from the ground station, initiating the deployment of the payload.		
Brand	ХВее	RF Output Power (mW)	165
Model	Pro 900-HP	Specific Frequency used by team (MHz)	902-928
Handshake or frequency hopping? (explain)	Transmitters #1 and #2 are assigned 64-bit addresses in the manufacturing process. Each transmitter will be programmed to only send and receive data from the other transmitter. In this way, a basic handshake will be made between each transmitter.		
Distance to closest e-match or altimeter (in)	48		
Description of shielding plan:	Shielded packaging and short connections		

Transmitter #2			
Location of transmitter:	Transmitter #2 is located at the ground-control station operated by the payload team.		
Purpose of transmitter:	Transmitter #1 sends a deployment signal to the payload, initiating the deployment procedure.		
Brand	XBee RF Output Power (mW) 165		165
Model	Pro 900-HP	Specific Frequency used by team (MHz)	902-928
Handshake or frequency hopping? (explain)	Transmitters #1 and #2 are assigned 64-bit addresses in the manufacturing process. Each transmitter will be programmed to only send and receive data from the other transmitter. In this way, a basic handshake will be made between each transmitter.		
Distance to closest e-match or altimeter (in)	N/A		
Description of shielding plan:	Shielded packaging and short connections		

Transmitter #3			
Location of transmitter:	Transmitter #3 is located in the Telemetrum in the avionics bay		
Purpose of transmitter:	Transmitter #3 is responsible for recording the altitude of the rocket and triggering the ejection of the parachutes.		
Brand	TI RF Output Power (mW) 40		40
Model	CC1200	Specific Frequency used by team (MHz)	434.55
Handshake or frequency hopping? (explain)	The transmitter will utilize a basic handshake between the altimeter and laptop on the ground to track the flight of the vehicle and deploy the parachutes when necessary.		
Distance to closest e-match or altimeter (in)	1.5		
Description of shielding plan:	Shielded boxing, short connections		

Transmitter #4			
Location of transmitter:	On-board the UAV		
Purpose of transmitter:	Send and receive telemetry from the UAV to the GCS throughout the payload mission		
Brand	3D Robotics	RF Output Power (mW)	100
Model	3DR Telemetry Kit	Specific Frequency used by team (MHz)	

Handshake or frequency hopping? (explain)	This transmitter utilizes a handshake based on an internal parameter in the Pixhawk flight computer and the GCS. The "MAV_SYS_ID" parameter is set to 154 on both of these devices, ensuring that it cannot communicate with other flight computers set with different ID values.	
Distance to closest e-match or altimeter (in)) This transmitter is powered off when inside the launch vehicle.	
Description of shielding plan:	EMI protective material is wrapped around high-current wires on the UAV as well as major UAV electrical components.	

Milestone Review Flysheet 2019-2020

Institution Pu	urdue University	Milestone	FRR
	Transmitter	#5	
Location of transmitter:			
Purpose of transmitter:			
Brand		RF Output Power (mW)	
Model		Specific Frequency used by team (MHz)	
Handshake or frequency hopping? (explain	n)		
Distance to closest e-match or altimeter (ir	n)		
Description of shielding plan:			

Transmitter #6		
Location of transmitter:		
Purpose of transmitter:		
Brand	RF Output Power (mW)	
Model	Specific Frequency used by team (MHz)	
Handshake or frequency hopping? (explain)		
Distance to closest e-match or altimeter (in)		
Description of shielding plan:		

Additional Comments

